Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Crit Care ; 28(1): 75, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486268

RESUMO

BACKGROUND: Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. METHODS: Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. RESULTS: 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6-88.3], and 86.8% [86.6-87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. CONCLUSIONS: Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.


Assuntos
Aprendizado Profundo , Respiração Artificial , Adulto , Humanos , Respiração Artificial/métodos , Inteligência Artificial , Pulmão , Ventiladores Mecânicos
2.
Respir Care ; 69(2): 166-175, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267230

RESUMO

BACKGROUND: Patient-ventilator asynchrony is common in patients undergoing mechanical ventilation. The proportion of health-care professionals capable of identifying and effectively managing different types of patient-ventilator asynchronies is limited. A few studies have developed specific training programs, but they mainly focused on improving patient-ventilator asynchrony detection without assessing the ability of health-care professionals to determine the possible causes. METHODS: We conducted a 36-h training program focused on patient-ventilator asynchrony detection and management for health-care professionals from 20 hospitals in Latin America and Spain. The training program included 6 h of a live online lesson during which 120 patient-ventilator asynchrony cases were presented. After the 6-h training lesson, health-care professionals were required to complete a 1-h training session per day for the subsequent 30 d. A 30-question assessment tool was developed and used to assess health-care professionals before training, immediately after the 6-h training lecture, and after the 30 d of training (1-month follow-up). RESULTS: One hundred sixteen health-care professionals participated in the study. The median (interquartile range) of the total number of correct answers in the pre-training, post-training, and 1-month follow-up were significantly different (12 [8.75-15], 18 [13.75-22], and 18.5 [14-23], respectively). The percentages of correct answers also differed significantly between the time assessments. Study participants significantly improved their performance between pre-training and post-training (P < .001). This performance was maintained after a 1-month follow-up (P = .95) for the questions related to the detection, determination of cause, and management of patient-ventilator asynchrony. CONCLUSIONS: A specific 36-h training program significantly improved the ability of health-care professionals to detect patient-ventilator asynchrony, determine the possible causes of patient-ventilator asynchrony, and properly manage different types of patient-ventilator asynchrony.


Assuntos
Pessoal de Saúde , 60717 , Humanos , Hospitais , Respiração Artificial , Espanha
3.
Biomedicines ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893050

RESUMO

BACKGROUND: Ventilator-associated pneumonia (VAP) is a severe condition. Early and adequate antibiotic treatment is the most important strategy for improving prognosis. Pancreatic Stone Protein (PSP) has been described as a biomarker that increases values 3-4 days before the clinical diagnosis of nosocomial sepsis in different clinical settings. We hypothesized that serial measures of PSP and its kinetics allow for an early diagnosis of VAP. METHODS: The BioVAP study was a prospective observational study designed to evaluate the role of biomarker dynamics in the diagnosis of VAP. To determine the association between repeatedly measured PSP and the risk of VAP, we used joint models for longitudinal and time-to-event data. RESULTS: Of 209 patients, 43 (20.6%) patients developed VAP, with a median time of 4 days. Multivariate joint models with PSP, CRP, and PCT did not show an association between biomarkers and VAP for the daily absolute value, with a hazard ratio (HR) for PSP of 1.01 (95% credible interval: 0.97 to 1.05), for CRP of 1.00 (0.83 to 1.22), and for PCT of 0.95 (0.82 to 1.08). The daily change of biomarkers provided similar results, with an HR for PSP of 1.15 (0.94 to 1.41), for CRP of 0.76 (0.35 to 1.58), and for PCT of 0.77 (0.40 to 1.45). CONCLUSION: Neither absolute PSP values nor PSP kinetics alone nor in combination with other biomarkers were useful in improving the prediction diagnosis accuracy in patients with VAP. CLINICAL TRIAL REGISTRATION: Registered retrospectively on August 3rd, 2012. NCT02078999.

4.
Crit Care ; 27(1): 188, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189173

RESUMO

BACKGROUND: Intensive Care Unit (ICU) COVID-19 survivors may present long-term cognitive and emotional difficulties after hospital discharge. This study aims to characterize the neuropsychological dysfunction of COVID-19 survivors 12 months after ICU discharge, and to study whether the use of a measure of perceived cognitive deficit allows the detection of objective cognitive impairment. We also explore the relationship between demographic, clinical and emotional factors, and both objective and subjective cognitive deficits. METHODS: Critically ill COVID-19 survivors from two medical ICUs underwent cognitive and emotional assessment one year after discharge. The perception of cognitive deficit and emotional state was screened through self-rated questionnaires (Perceived Deficits Questionnaire, Hospital Anxiety and Depression Scale and Davidson Trauma Scale), and a comprehensive neuropsychological evaluation was carried out. Demographic and clinical data from ICU admission were collected retrospectively. RESULTS: Out of eighty participants included in the final analysis, 31.3% were women, 61.3% received mechanical ventilation and the median age of patients was 60.73 years. Objective cognitive impairment was observed in 30% of COVID-19 survivors. The worst performance was detected in executive functions, processing speed and recognition memory. Almost one in three patients manifested cognitive complaints, and 22.5%, 26.3% and 27.5% reported anxiety, depression and post-traumatic stress disorder (PTSD) symptoms, respectively. No significant differences were found in the perception of cognitive deficit between patients with and without objective cognitive impairment. Gender and PTSD symptomatology were significantly associated with perceived cognitive deficit, and cognitive reserve with objective cognitive impairment. CONCLUSIONS: One-third of COVID-19 survivors suffered objective cognitive impairment with a frontal-subcortical dysfunction 12 months after ICU discharge. Emotional disturbances and perceived cognitive deficits were common. Female gender and PTSD symptoms emerged as predictive factors for perceiving worse cognitive performance. Cognitive reserve emerged as a protective factor for objective cognitive functioning. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04422444; June 9, 2021.


Assuntos
COVID-19 , Transtornos de Estresse Pós-Traumáticos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cognição , COVID-19/epidemiologia , Demografia , Unidades de Terapia Intensiva , Alta do Paciente , Estudos Retrospectivos , Transtornos de Estresse Pós-Traumáticos/complicações , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Sobreviventes
6.
Am J Respir Crit Care Med ; 207(11): 1441-1450, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705985

RESUMO

ICU clinicians rely on bedside physiological measurements to inform many routine clinical decisions. Because deranged physiology is usually associated with poor clinical outcomes, it is tempting to hypothesize that manipulating and intervening on physiological parameters might improve outcomes for patients. However, testing these hypotheses through mathematical models of the relationship between physiology and outcomes presents a number of important methodological challenges. These models reflect the theories of the researcher and can therefore be heavily influenced by one's assumptions and background beliefs. Model building must therefore be approached with great care and forethought, because failure to consider relevant sources of measurement error, confounding, coupling, and time dependency or failure to assess the direction of causality for associations of interest before modeling may give rise to spurious results. This paper outlines the main challenges in analyzing and interpreting these models and offers potential solutions to address these challenges.


Assuntos
Respiração Artificial , Insuficiência Respiratória , Humanos , Respiração Artificial/métodos , Insuficiência Respiratória/etiologia , Unidades de Terapia Intensiva
7.
Intensive Care Med ; 48(12): 1751-1759, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400984

RESUMO

PURPOSE: High-flow nasal cannula (HFNC) oxygen therapy was noninferior to noninvasive ventilation (NIV) for preventing reintubation in a heterogeneous population at high-risk for extubation failure. However, outcomes might differ in certain subgroups of patients. Thus, we aimed to determine whether NIV with active humidification is superior to HFNC in preventing reintubation in patients with ≥ 4 risk factors (very high risk for extubation failure). METHODS: Randomized controlled trial in two intensive care units in Spain (June 2020‒June 2021). Patients ready for planned extubation with ≥ 4 of the following risk factors for reintubation were included: age > 65 years, Acute Physiology and Chronic Health Evaluation II score > 12 on extubation day, body mass index > 30, inadequate secretions management, difficult or prolonged weaning, ≥ 2 comorbidities, acute heart failure indicating mechanical ventilation, moderate-to-severe chronic obstructive pulmonary disease, airway patency problems, prolonged mechanical ventilation, or hypercapnia on finishing the spontaneous breathing trial. Patients were randomized to undergo NIV with active humidification or HFNC for 48 h after extubation. The primary outcome was reintubation rate within 7 days after extubation. Secondary outcomes included postextubation respiratory failure, respiratory infection, sepsis, multiorgan failure, length of stay, mortality, adverse events, and time to reintubation. RESULTS: Of 182 patients (mean age, 60 [standard deviation (SD), 15] years; 117 [64%] men), 92 received NIV and 90 HFNC. Reintubation was required in 21 (23.3%) patients receiving NIV vs 35 (38.8%) of those receiving HFNC (difference -15.5%; 95% confidence interval (CI) -28.3 to -1%). Hospital length of stay was lower in those patients treated with NIV (20 [12‒36.7] days vs 26.5 [15‒45] days, difference 6.5 [95%CI 0.5-21.1]). No additional differences in the other secondary outcomes were observed. CONCLUSIONS: Among adult critically ill patients at very high-risk for extubation failure, NIV with active humidification was superior to HFNC for preventing reintubation.


Assuntos
Extubação , Ventilação não Invasiva , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Cânula , Respiração Artificial , Intubação Intratraqueal
11.
Crit Care Med ; 50(7): e619-e629, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120043

RESUMO

OBJECTIVES: To characterize clusters of double triggering and ineffective inspiratory efforts throughout mechanical ventilation and investigate their associations with mortality and duration of ICU stay and mechanical ventilation. DESIGN: Registry-based, real-world study. BACKGROUND: Asynchronies during invasive mechanical ventilation can occur as isolated events or in clusters and might be related to clinical outcomes. SUBJECTS: Adults requiring mechanical ventilation greater than 24 hours for whom greater than or equal to 70% of ventilator waveforms were available. INTERVENTIONS: We identified clusters of double triggering and ineffective inspiratory efforts and determined their power and duration. We used Fine-Gray's competing risk model to analyze their effects on mortality and generalized linear models to analyze their effects on duration of mechanical ventilation and ICU stay. MEASUREMENTS AND MAIN RESULTS: We analyzed 58,625,796 breaths from 180 patients. All patients had clusters (mean/d, 8.2 [5.4-10.6]; mean power, 54.5 [29.6-111.4]; mean duration, 20.3 min [12.2-34.9 min]). Clusters were less frequent during the first 48 hours (5.5 [2.5-10] vs 7.6 [4.4-9.9] in the remaining period [p = 0.027]). Total number of clusters/d was positively associated with the probability of being discharged alive considering the total period of mechanical ventilation (p = 0.001). Power and duration were similar in the two periods. Power was associated with the probability of being discharged dead (p = 0.03), longer mechanical ventilation (p < 0.001), and longer ICU stay (p = 0.035); cluster duration was associated with longer ICU stay (p = 0.027). CONCLUSIONS: Clusters of double triggering and ineffective inspiratory efforts are common. Although higher numbers of clusters might indicate better chances of survival, clusters with greater power and duration indicate a risk of worse clinical outcomes.


Assuntos
Estado Terminal , Ventiladores Mecânicos , Adulto , Estado Terminal/terapia , Humanos , Respiração Artificial
12.
Elife ; 112022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35060899

RESUMO

Background: Variants in IFIH1, a gene coding the cytoplasmatic RNA sensor MDA5, regulate the response to viral infections. We hypothesized that IFIH1 rs199076 variants would modulate host response and outcome after severe COVID-19. Methods: Patients admitted to an intensive care unit (ICU) with confirmed COVID-19 were prospectively studied and rs1990760 variants determined. Peripheral blood gene expression, cell populations, and immune mediators were measured. Peripheral blood mononuclear cells from healthy volunteers were exposed to an MDA5 agonist and dexamethasone ex-vivo, and changes in gene expression assessed. ICU discharge and hospital death were modeled using rs1990760 variants and dexamethasone as factors in this cohort and in-silico clinical trials. Results: About 227 patients were studied. Patients with the IFIH1 rs1990760 TT variant showed a lower expression of inflammation-related pathways, an anti-inflammatory cell profile, and lower concentrations of pro-inflammatory mediators. Cells with TT variant exposed to an MDA5 agonist showed an increase in IL6 expression after dexamethasone treatment. All patients with the TT variant not treated with steroids survived their ICU stay (hazard ratio [HR]: 2.49, 95% confidence interval [CI]: 1.29-4.79). Patients with a TT variant treated with dexamethasone showed an increased hospital mortality (HR: 2.19, 95% CI: 1.01-4.87) and serum IL-6. In-silico clinical trials supported these findings. Conclusions: COVID-19 patients with the IFIH1 rs1990760 TT variant show an attenuated inflammatory response and better outcomes. Dexamethasone may reverse this anti-inflammatory phenotype. Funding: Centro de Investigación Biomédica en Red (CB17/06/00021), Instituto de Salud Carlos III (PI19/00184 and PI20/01360), and Fundació La Marató de TV3 (413/C/2021).


Patients with severe COVID-19 often need mechanical ventilation to help them breathe and other types of intensive care. The outcome for many of these patients depends on how their immune system reacts to the infection. If the inflammatory response triggered by the immune system is too strong, this can cause further harm to the patient. One gene that plays an important role in inflammation is IFIH1 which encodes a protein that helps the body to recognize viruses. There are multiple versions of this gene which each produce a slightly different protein. It is possible that this variation impacts how the immune system responds to the virus that causes COVID-19. To investigate, Amado-Rodríguez, Salgado del Riego et al. analyzed the IFIH1 gene in 227 patients admitted to an intensive care unit in Spain for severe COVID-19 between March and December 2020. They found that patients with a specific version of the gene called TT experienced less inflammation and were more likely to survive the infection. Physicians typically treat patients with moderate to severe COVID-19 with corticosteroid drugs that reduce the inflammatory response. However, Amado-Rodríguez, Salgado del Riego et al. found that patients with the TT version of the IFIH1 gene were at greater risk of dying if they received corticosteroids. The team then applied the distribution of IFIH1 variants among different ethnic ancestries to data from a previous clinical trial, and simulated the effects of corticosteroid treatment. This 'mock' clinical trial supported their findings from the patient-derived data, which were also validated by laboratory experiments on immune cells from individuals with the TT gene. The work by Amado-Rodríguez, Salgado del Riego et al. suggests that while corticosteroids benefit some patients, they may cause harm to others. However, a real-world clinical trial is needed to determine whether patients with the TT version of the IFIH1 gene would do better without steroids.


Assuntos
COVID-19/genética , Inflamação/genética , Helicase IFIH1 Induzida por Interferon/genética , SARS-CoV-2/patogenicidade , Idoso , COVID-19/complicações , Estado Terminal , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade
13.
J Pers Med ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34945732

RESUMO

This study focuses on the application of a non-immersive virtual reality (VR)-based neurocognitive intervention in critically ill patients. Our aim was to assess the feasibility of direct outcome measures to detect the impact of this digital therapy on patients' cognitive and emotional outcomes. Seventy-two mechanically ventilated adult patients were randomly assigned to the "treatment as usual" (TAU, n = 38) or the "early neurocognitive stimulation" (ENRIC, n = 34) groups. All patients received standard intensive care unit (ICU) care. Patients in the ENRIC group also received adjuvant neurocognitive stimulation during the ICU stay. Outcome measures were a full neuropsychological battery and two mental health questionnaires. A total of 42 patients (21 ENRIC) completed assessment one month after ICU discharge, and 24 (10 ENRIC) one year later. At one-month follow-up, ENRIC patients had better working memory scores (p = 0.009, d = 0.363) and showed up to 50% less non-specific anxiety (11.8% vs. 21.1%) and depression (5.9% vs. 10.5%) than TAU patients. A general linear model of repeated measures reported a main effect of group, but not of time or group-time interaction, on working memory, with ENRIC patients outperforming TAU patients (p = 0.008, ηp2 = 0.282). Our results suggest that non-immersive VR-based neurocognitive stimulation may help improve short-term working memory outcomes in survivors of critical illness. Moreover, this advantage could be maintained in the long term. An efficacy trial in a larger sample of participants is feasible and must be conducted.

14.
Med. intensiva (Madr., Ed. impr.) ; 45(7): 431-436, Octubre 2021.
Artigo em Espanhol | IBECS | ID: ibc-224145

RESUMO

Reclutamiento alveolar en el síndrome de distrés respiratorio agudo (SDRA) se define como la entrada de gas en zonas previamente no ventiladas o en zonas pobremente ventiladas. El reclutamiento alveolar durante una maniobra de reclutamiento (MR) dependerá de la duración de la maniobra, del tejido pulmonar reclutable, del balance entre reclutamiento de áreas colapsadas y sobredistensión de las áreas ventiladas. La estimación del reclutamiento alveolar se realiza con la tomografía computarizada de tórax y,a pie de cama, con la construcción de curvas de volumen y presión, la ecografía pulmonar y la tomografía por impedancia. La evidencia científica nos indica que la utilización de las MR en pacientes con SDRA sigue sujeta a controversia. Estudios aleatorizados del SDRA o bien no han demostrado beneficio o bien han revelado un incremento de la mortalidad y, por ello, no se recomienda su uso rutinario. (AU)


Alveolar recruitment in acute respiratory distress syndrome (ARDS) is defined as the penetration of gas into previously unventilated areas or poorly ventilated areas. Alveolar recruitment during recruitment maneuvering (RM) depends on the duration of the maneuver, the recruitable lung tissue, and the balance between the recruitment of collapsed areas and over-insufflation of the ventilated areas. Alveolar recruitment is estimated using computed tomography of the lung and, at the patient bedside, through assessment of the recruited volume using pressure-volume curves and assessing lung morphology with pulmonary ultrasound and/or impedance tomography. The scientific evidence on RM in patients with ARDS remains subject to controversy. Randomized studies on ARDS have shown no benefit or have even reflected an increase in mortality. The routine use of RM is therefore not recommended. (AU)


Assuntos
Humanos , Respiração Artificial , Lesão Pulmonar , Sistema Respiratório
15.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502521

RESUMO

BACKGROUND: Sepsis is a serious, heterogeneous clinical entity produced by a severe and systemic host inflammatory response to infection. Methotrexate (MTX) is a folate-antagonist that induces the generation of adenosine and also inhibits JAK/STAT pathway; MTX it is widely used as an anti-inflammatory drug to control the immune system. OBJECTIVE: The aim of this study was to assess the beneficial effects of a single and low dose of MTX in the systemic response and acute lung injury (ALI) induced by sepsis. As in the clinics, we treated our animals with antibiotics and fluids and performed the source control to mimic the current clinic treatment. METHODS AND MAIN RESULTS: Sepsis was induced in rats by a cecal ligation puncture (CLP) procedure. Six hours after induction of sepsis, we proceeded to the source control; fluids and antibiotics were administered at 6 h and 24 h after CLP. MTX (2.5 mg/Kg) was administered 6 h after the first surgery in one CLP experimental group and to one Sham group. A protective effect of MTX was observed through a significant reduction of pro-inflammatory cytokines and a decrease infiltration of inflammatory cells in the lung. In addition, we found a regulation in adenosine receptor A2aR and the metalloproteinases by MTX. CONCLUSION: A single, low dose of MTX attenuates sepsis lung-associated damage by decreasing pro-inflammatory response, infiltration of pro-inflammatory cells and avoiding defective tissue lung remodeling.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Metotrexato/farmacologia , Sepse/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Ceco/patologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Ligadura , Pulmão/efeitos dos fármacos , Masculino , Metotrexato/metabolismo , Punções , Ratos , Ratos Sprague-Dawley , Sepse/fisiopatologia
16.
Br J Anaesth ; 127(4): 648-659, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34340836

RESUMO

Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.


Assuntos
Encéfalo/metabolismo , Lesão Pulmonar/fisiopatologia , Respiração Artificial/métodos , Animais , Sistema Nervoso Central/metabolismo , Estado Terminal , Humanos , Insuficiência de Múltiplos Órgãos/fisiopatologia , Respiração com Pressão Positiva/métodos
17.
Sci Rep ; 11(1): 16014, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362950

RESUMO

The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients' readiness, there is still around 15-20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation -being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness.


Assuntos
Frequência Cardíaca , Unidades de Terapia Intensiva/estatística & dados numéricos , Respiração Artificial/métodos , Respiração , Desmame do Respirador/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
18.
Respir Care ; 66(9): 1389-1397, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34230215

RESUMO

BACKGROUND: This was a pilot study to analyze the effects of tracheostomy on patient-ventilator asynchronies and respiratory system mechanics. Data were extracted from an ongoing prospective, real-world database that stores continuous output from ventilators and bedside monitors. Twenty adult subjects were on mechanical ventilation and were tracheostomized during an ICU stay: 55% were admitted to the ICU for respiratory failure and 35% for neurologic conditions; the median duration of mechanical ventilation before tracheostomy was 12 d; and the median duration of mechanical ventilation was 16 d. METHODS: We compared patient-ventilator asynchronies (the overall asynchrony index and the rates of specific asynchronies) and respiratory system mechanics (respiratory-system compliance and airway resistance) during the 24 h before tracheostomy versus the 24 h after tracheostomy. We analyzed possible differences in these variables among the subjects who underwent surgical versus percutaneous tracheostomy. To compare longitudinal changes in the variables, we used linear mixed-effects models for repeated measures along time in different observation periods. A total of 920 h of mechanical ventilation were analyzed. RESULTS: Respiratory mechanics and asynchronies did not differ significantly between the 24-h periods before and after tracheostomy: compliance of the respiratory system median (IQR) (47.9 [41.3 - 54.6] mL/cm H2O vs 47.6 [40.9 - 54.3] mL/cm H2O; P = .94), airway resistance (9.3 [7.5 - 11.1] cm H2O/L/s vs 7.0 [5.2 - 8.8] cm H2O/L/s; P = .07), asynchrony index (2.0% [1.1 - 3.6%] vs 4.1% [2.3 - 7.6%]; P = .09), ineffective expiratory efforts (0.9% [0.4 - 1.8%] vs 2.2% [1.0 - 4.4%]; P = .08), double cycling (0.5% [0.3 - 1.0%] vs 0.9% [0.5 - 1.9%]; P = .24), and percentage of air trapping (7.6% [4.2 - 13.8%] vs 10.6% [5.9 - 19.2%]; P = .43). No differences in respiratory mechanics or patient-ventilator asynchronies were observed between percutaneous and surgical procedures. CONCLUSIONS: Tracheostomy did not affect patient-ventilator asynchronies or respiratory mechanics within 24 h before and after the procedure.


Assuntos
Traqueostomia , Ventiladores Mecânicos , Adulto , Humanos , Pulmão , Projetos Piloto , Estudos Prospectivos , Respiração Artificial , Mecânica Respiratória
19.
Crit Care ; 25(1): 171, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001222

RESUMO

BACKGROUND: Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS. METHODS: Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS. RESULTS: A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality. CONCLUSIONS: There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model. TRIAL REGISTRATION: ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.


Assuntos
COVID-19/mortalidade , Gravidade do Paciente , Respiração Artificial , Espaço Morto Respiratório , Síndrome do Desconforto Respiratório/terapia , Adulto , Biomarcadores , COVID-19/complicações , COVID-19/fisiopatologia , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Prognóstico , Curva ROC , Síndrome do Desconforto Respiratório/etiologia , Testes de Função Respiratória , Mecânica Respiratória , Estudos Retrospectivos
20.
Crit Care Med ; 49(9): 1460-1469, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883458

RESUMO

OBJECTIVES: To measure the impact of clusters of double triggering on clinical outcomes. DESIGN: Prospective cohort study. SETTING: Respiratory ICU in Brazil. PATIENTS: Adult patients under recent mechanical ventilation and with expectation of mechanical ventilation for more than 24 hours after enrollment. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used a dedicated software to analyze ventilator waveforms throughout the entire period of mechanical ventilation and detect double triggering. We defined a cluster of double triggering as a period of time containing at least six double triggering events in a 3-minute period. Patients were followed until hospital discharge. We addressed the association between the presence and the duration of clusters with clinical outcomes. A total of 103 patients were enrolled in the study and 90 (87%) had at least one cluster of double triggering. The median number of clusters per patient was 19 (interquartile range, 6-41), with a median duration of 8 minutes (6-12 min). Compared with patients who had no clusters, patients with at least one cluster had longer duration of mechanical ventilation (7 d [4-11 d] vs 2 d [2-3 d]) and ICU length of stay (9 d [7-16 d] vs 13 d [2-8 d]). Thirty-three patients had high cumulative duration of clusters of double triggering (≥ 12 hr), and it was associated with longer duration of mechanical ventilation, fewer ventilator-free days, and longer ICU length of stay. Adjusted by duration of mechanical ventilation and severity of illness, high cumulative duration of clusters was associated with shorter survival at 28 days (hazard ratio, 2.09 d; 95% CI, 1.04-4.19 d). CONCLUSIONS: Clusters of double triggering are common and were associated with worse clinical outcomes. Patients who had a high cumulative duration of clusters had fewer ventilator-free days, longer duration of mechanical ventilation, longer ICU length of stay, and shorter survival than patients with low cumulative duration of cluster.


Assuntos
Respiração Artificial/estatística & dados numéricos , Insuficiência Respiratória/terapia , Adulto , Brasil , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Respiração Artificial/métodos , Insuficiência Respiratória/epidemiologia , Escore Fisiológico Agudo Simplificado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...